7.1. Hash-tables

  • File: HashTables.ml

Hash-tables generalise the ideas of ordinary arrays and also (somewhat surprisingly) bucket-sort, providing an efficient way to store elements in a collection, addressed by their keys, with average \(O(1)\) complexity for inserting, finding and removing elements from the collection.

7.1.1. Allocation by hashing keys

At heart of hash-tables is the idea of a hash-function — a mapping from elements of a certain type to randomly distributed integers. This functionality can be described by means of the following OCaml signature:

module type Hashable = sig
  type t
  val hash : t -> int
end

Designing a good hash-function for an arbitrary data type (e.g., a string) is highly non-trivial and is outside of the scope of this course. The main complexity is to make it such that “similar” values (e.g., s1 = "aaa" and s2 = "aab") would have very different hashes (e.g., hash s1 = 12423512 and s2 = 99887978), thus providing a uniform distribution. It is not required for a hash-function to be injective (i.e., it may map different elements to the same integer value — phenomenon known as hash collision). However, for most of the purposes of hash-functions, it is assumed that collisions are relatively rare.

7.1.2. Operations on hash-tables

As we remember, in arrays, elements are indexed by integers ranging form 0 to the size of the array minus one. Hash-tables provide an interface similar to arrays, with the only difference that any type t can be used as keys for indexing elements (similarly to integers in an array), as long as there is an implementation of hash available for it.

An interface of a hash-table is thus parameterised by the hashing strategy, used for its implementation for a specific type of keys. The following module signature the types and operations over a hash table:

module type HashTable = functor
  (H : Hashable) -> sig
  type key = H.t
  type 'a hash_table
  val mk_new_table : int -> (key * 'v) hash_table
  val insert : (key * 'v) hash_table -> key -> 'v -> unit
  val get : (key * 'v) hash_table -> key -> 'v option
  val remove : (key * 'v) hash_table -> key -> unit
end

As announced key specifies the type of keys, used to refer to elements stored in a hash table. One can create a new hash-table of a predefined size (of type int) via mk_new_table. The next three functions provide the main interface for hash-table, allowing to insert and retrieve elements for a given key, as well as remove elements by key, thus, changing the state of the hash table (hence the return type of remove is unit).

7.1.3. Implementing hash-tables

Implementations of hash-table build on a simple idea. In order to fit an arbitrary number of elements with different keys into a limited-size array, one can use a trick similar to bucket sort, enabled by the hashing function:

  • Compute (hash k) mod n to compute the slot (aka bucket) in an array of size n for inserting an element with a key k;

  • if there are already elements in this bucket, add the new one, together with the old ones, storing them in a list.

Then, when trying to retrieve an element with a key k, one has to

  • Compute (hash k) mod n to compute the bucket where the element is located;

  • Go through the bucket with a linear search, finding the element whose key is precisely k.

That is, it is okay for elements with different keys to collide on the same bucket, as more elaborated search will be performed in each bucket.

Why hash-tables are so efficient? As long as the size of the carrier array is greater or roughly the same as the number of inserted elements so far, and there were not many collisions, we can assume that each bucket has a very small number of elements (for which the collisions have happened while determining their bucket). Therefore, as long as the size of a bucket is limited by a certain constant, the search will boil down to (a) computing a bucket for a key in a constant time and (b) scanning the bucket for the right element, both operations yielding \(O(1)\) complexity.

Let us start by defining a simple hash-table that uses lists to represent buckets:

module ListBasedHashTable
  : HashTable = functor
  (H : Hashable) -> struct
  type key = H.t

  type 'v hash_table = {
    buckets : 'v list array;
    size : int
  }

  (* More functions are coming *)

  end

Making a new hash table can be done by simply allocating a new array:

let mk_new_table size =
  let buckets = Array.make size [] in
  {buckets = buckets;
   size = size}

Inserting an element follows the scenario described above. List.filter is used to make sure that no elements with the same key are lingering in the same bucket:

let insert ht k v =
  let hs = H.hash k in
  let bnum = hs mod ht.size in
  let bucket = ht.buckets.(bnum) in
  let clean_bucket =
    List.filter (fun (k', _) -> k' <> k) bucket in
  ht.buckets.(bnum) <- (k, v) :: clean_bucket

Retrieving an element by its key is done by using List.find_opt for retrieving the desired element from the bucket. Even though List.find_opt has linear complexity, it will not hurt performance for small buckets:

let get ht k =
  let hs = H.hash k in
  let bnum = hs mod ht.size in
  let bucket = ht.buckets.(bnum) in
  let res = List.find_opt (fun (k', _) -> k' = k) bucket in
  match res with
  | Some (_, v) -> Some v
  | _ -> None

Finally, removing an element is similar to inserting a new one:

let remove ht k =
  let hs = H.hash k in
  let bnum = hs mod ht.size in
  let bucket = ht.buckets.(bnum) in
  let clean_bucket =
    List.filter (fun (k', _) -> k' <> k) bucket in
  ht.buckets.(bnum) <- clean_bucket

7.1.4. Hash-tables in action

Let us adopt the simplest possible strategy for hashing the integer keys:

module HashTableIntKey = ListBasedHashTable
    (struct type t = int let hash i = i end)

As before, let us fill up a hash-table from an array:

# let a = generate_key_value_array 10

# a;;
- : (int * string) array =
[|(7, "sapwd"); (3, "bsxoq"); (0, "lfckx"); (7, "nwztj"); (5, "voeed");
  (9, "jtwrn"); (8, "zovuq"); (4, "hgiki"); (8, "yqnvq"); (3, "gjmfh")|]

# for i = 0 to 9 do HashTableIntKey.insert hs (fst a.(i)) a.(i) done;;
- : unit = ()

We can now retrieve the values:

# HashTableIntKey.get hs 4;;
- : (int * string) option = Some (4, "hgiki")
# HashTableIntKey.get hs 8;;
- : (int * string) option = Some (8, "yqnvq")
# HashTableIntKey.get hs 10;;
- : (int * string) option = None

Notice that the latest occurrence of an element with the key 8 (i.e., (8, "yqnvq")) has overriden an earlier element (8, "zovuq") in the hash-table.